Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
PLoS One ; 19(3): e0296230, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38483858

RESUMO

SRC kinase associated phosphoprotein 1 (SKAP1), an adaptor for protein assembly, plays an important role in the immune system such as stabilizing immune synapses. Understanding how these functions are controlled at the level of the protein-protein interactions is necessary to describe these processes and to develop therapeutics. Here, we dissected the SKAP1 modular organization to recognize SRC kinases and compared it to that of its paralog SRC kinase associated phosphoprotein 2 (SKAP2). Different conserved motifs common to either both proteins or specific to SKAP2 were found using this comparison. Two modules harboring different binding properties between SKAP1 and SKAP2 were identified: one composed of two conserved motifs located in the second interdomain interacting at least with the SH2 domain of SRC kinases and a second one composed of the DIM domain modulated by the SH3 domain and the activation of SRC kinases. This work suggests a convergent evolution of the binding properties of some SRC kinases interacting specifically with either SKAP1 or SKAP2.


Assuntos
Fosfoproteínas , Quinases da Família src , Quinases da Família src/metabolismo , Fosfoproteínas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Domínios de Homologia de src
2.
JMIR Public Health Surveill ; 9: e46898, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38015594

RESUMO

BACKGROUND: The seroprevalence of SARS-CoV-2 infection in the French population was estimated with a representative, repeated cross-sectional survey based on residual sera from routine blood testing. These data contained no information on infection or vaccination status, thus limiting the ability to detail changes observed in the immunity level of the population over time. OBJECTIVE: Our aim is to predict the infected or vaccinated status of individuals in the French serosurveillance survey based only on the results of serological assays. Reference data on longitudinal serological profiles of seronegative, infected, and vaccinated individuals from another French cohort were used to build the predictive model. METHODS: A model of individual vaccination or infection status with respect to SARS-CoV-2 obtained from a machine learning procedure was proposed based on 3 complementary serological assays. This model was applied to the French nationwide serosurveillance survey from March 2020 to March 2022 to estimate the proportions of the population that were negative, infected, vaccinated, or infected and vaccinated. RESULTS: From February 2021 to March 2022, the estimated percentage of infected and unvaccinated individuals in France increased from 7.5% to 16.8%. During this period, the estimated percentage increased from 3.6% to 45.2% for vaccinated and uninfected individuals and from 2.1% to 29.1% for vaccinated and infected individuals. The decrease in the seronegative population can be largely attributed to vaccination. CONCLUSIONS: Combining results from the serosurveillance survey with more complete data from another longitudinal cohort completes the information retrieved from serosurveillance while keeping its protocol simple and easy to implement.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Estudos Transversais , SARS-CoV-2 , Estudos Soroepidemiológicos , Aprendizado de Máquina , Vacinação
3.
Nat Biotechnol ; 41(1): 140-149, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36217029

RESUMO

Understanding the mechanisms of coronavirus disease 2019 (COVID-19) disease severity to efficiently design therapies for emerging virus variants remains an urgent challenge of the ongoing pandemic. Infection and immune reactions are mediated by direct contacts between viral molecules and the host proteome, and the vast majority of these virus-host contacts (the 'contactome') have not been identified. Here, we present a systematic contactome map of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with the human host encompassing more than 200 binary virus-host and intraviral protein-protein interactions. We find that host proteins genetically associated with comorbidities of severe illness and long COVID are enriched in SARS-CoV-2 targeted network communities. Evaluating contactome-derived hypotheses, we demonstrate that viral NSP14 activates nuclear factor κB (NF-κB)-dependent transcription, even in the presence of cytokine signaling. Moreover, for several tested host proteins, genetic knock-down substantially reduces viral replication. Additionally, we show for USP25 that this effect is phenocopied by the small-molecule inhibitor AZ1. Our results connect viral proteins to human genetic architecture for COVID-19 severity and offer potential therapeutic targets.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/genética , Proteoma/genética , Síndrome Pós-COVID-19 Aguda , Replicação Viral/genética , Ubiquitina Tiolesterase/farmacologia
4.
Mol Cell Proteomics ; 22(1): 100451, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36423812

RESUMO

Dimerization of SRC kinase adaptor phosphoprotein 2 (SKAP2) induces an increase of binding for most SRC kinases suggesting a fine-tuning with transphosphorylation for kinase activation. This work addresses the molecular basis of SKAP2-mediated SRC kinase regulation through the lens of their interaction capacities. By combining a luciferase complementation assay and extensive site-directed mutagenesis, we demonstrated that SKAP2 interacts with SRC kinases through a modular organization depending both on their phosphorylation-dependent activation and subcellular localization. SKAP2 contains three interacting modules consisting in the dimerization domain, the SRC homology 3 (SH3) domain, and the second interdomain located between the Pleckstrin homology and the SH3 domains. Functionally, the dimerization domain is necessary and sufficient to bind to most activated and myristyl SRC kinases. In contrast, the three modules are necessary to bind SRC kinases at their steady state. The Pleckstrin homology and SH3 domains of SKAP2 as well as tyrosines located in the interdomains modulate these interactions. Analysis of mutants of the SRC kinase family member hematopoietic cell kinase supports this model and shows the role of two residues, Y390 and K7, on its degradation following activation. In this article, we show that a modular architecture of SKAP2 drives its interaction with SRC kinases, with the binding capacity of each module depending on both their localization and phosphorylation state activation. This work opens new perspectives on the molecular mechanisms of SRC kinases activation, which could have significant therapeutic impact.


Assuntos
Domínios de Homologia de src , Quinases da Família src , Quinases da Família src/metabolismo , Fosfoproteínas/metabolismo , Fosforilação
5.
Viruses ; 14(6)2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35746718

RESUMO

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is responsible for the current COVID-19 pandemic. SARS-CoV-2 is characterized by an important capacity to circumvent the innate immune response. The early interferon (IFN) response is necessary to establish a robust antiviral state. However, this response is weak and delayed in COVID-19 patients, along with massive pro-inflammatory cytokine production. This dysregulated innate immune response contributes to pathogenicity and in some individuals leads to a critical state. Characterizing the interplay between viral factors and host innate immunity is crucial to better understand how to manage the disease. Moreover, the constant emergence of new SARS-CoV-2 variants challenges the efficacy of existing vaccines. Thus, to control this virus and readjust the antiviral therapy currently used to treat COVID-19, studies should constantly be re-evaluated to further decipher the mechanisms leading to SARS-CoV-2 pathogenesis. Regarding the role of the IFN response in SARS-CoV-2 infection, in this review we summarize the mechanisms by which SARS-CoV-2 evades innate immune recognition. More specifically, we explain how this virus inhibits IFN signaling pathways (IFN-I/IFN-III) and controls interferon-stimulated gene (ISG) expression. We also discuss the development and use of IFNs and potential drugs controlling the innate immune response to SARS-CoV-2, helping to clear the infection.


Assuntos
Tratamento Farmacológico da COVID-19 , Interferon Tipo I , Antivirais/farmacologia , Antivirais/uso terapêutico , Humanos , Evasão da Resposta Imune , Imunidade Inata , Interferons/uso terapêutico , Pandemias , SARS-CoV-2
6.
iScience ; 25(7): 104537, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35769882

RESUMO

The development of anti-infectives against a large range of AB-like toxin-producing bacteria includes the identification of compounds disrupting toxin transport through both the endolysosomal and retrograde pathways. Here, we performed a high-throughput screening of compounds blocking Rac1 proteasomal degradation triggered by the Cytotoxic Necrotizing Factor-1 (CNF1) toxin, which was followed by orthogonal screens against two toxins that hijack the endolysosomal (diphtheria toxin) or retrograde (Shiga-like toxin 1) pathways to intoxicate cells. This led to the identification of the molecule C910 that induces the enlargement of EEA1-positive early endosomes associated with sorting defects of CNF1 and Shiga toxins to their trafficking pathways. C910 protects cells against eight bacterial AB toxins and the CNF1-mediated pathogenic Escherichia coli invasion. Interestingly, C910 reduces influenza A H1N1 and SARS-CoV-2 viral infection in vitro. Moreover, parenteral administration of C910 to mice resulted in its accumulation in lung tissues and a reduction in lethal influenza infection.

7.
J Biol Chem ; 298(6): 101956, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35452674

RESUMO

The signaling pathways and cellular functions regulated by the four Numb-associated kinases are largely unknown. We reported that AAK1 and GAK control intracellular trafficking of RNA viruses and revealed a requirement for BIKE in early and late stages of dengue virus (DENV) infection. However, the downstream targets phosphorylated by BIKE have not yet been identified. Here, to identify BIKE substrates, we conducted a barcode fusion genetics-yeast two-hybrid screen and retrieved publicly available data generated via affinity-purification mass spectrometry. We subsequently validated 19 of 47 putative BIKE interactors using mammalian cell-based protein-protein interaction assays. We found that CLINT1, a cargo-specific adapter implicated in bidirectional Golgi-to-endosome trafficking, emerged as a predominant hit in both screens. Our experiments indicated that BIKE catalyzes phosphorylation of a threonine 294 CLINT1 residue both in vitro and in cell culture. Our findings revealed that CLINT1 phosphorylation mediates its binding to the DENV nonstructural 3 protein and subsequently promotes DENV assembly and egress. Additionally, using live-cell imaging we revealed that CLINT1 cotraffics with DENV particles and is involved in mediating BIKE's role in DENV infection. Finally, our data suggest that additional cellular BIKE interactors implicated in the host immune and stress responses and the ubiquitin proteasome system might also be candidate phosphorylation substrates of BIKE. In conclusion, these findings reveal cellular substrates and pathways regulated by the understudied Numb-associated kinase enzyme BIKE, a mechanism for CLINT1 regulation, and control of DENV infection via BIKE signaling, with potential implications for cell biology, virology, and host-targeted antiviral design.


Assuntos
Vírus da Dengue , Dengue , Animais , Dengue/metabolismo , Vírus da Dengue/metabolismo , Humanos , Fosforilação , Técnicas do Sistema de Duplo-Híbrido , Replicação Viral
8.
EBioMedicine ; 70: 103495, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34304047

RESUMO

BACKGROUND: Children are underrepresented in the COVID-19 pandemic and often experience milder disease than adolescents and adults. Reduced severity is possibly due to recent and more frequent seasonal human coronaviruses (HCoV) infections. We assessed the seroprevalence of SARS-CoV-2 and seasonal HCoV specific antibodies in a large cohort in north-eastern France. METHODS: In this cross-sectional seroprevalence study, serum samples were collected from children and adults requiring hospital admission for non-COVID-19 between February and August 2020. Antibody responses to SARS-CoV-2 and seasonal HCoV (229E, HKU1, NL63, OC43) were assessed using a bead-based multiplex assay, Luciferase-Linked ImmunoSorbent Assay, and a pseudotype neutralisation assay. FINDINGS: In 2,408 individuals, seroprevalence of SARS-CoV-2-specific antibodies was 7-8% with three different immunoassays. Antibody levels to seasonal HCoV increased substantially up to the age of 10. Antibody responses in SARS-CoV-2 seropositive individuals were lowest in adults 18-30 years. In SARS-CoV-2 seronegative individuals, we observed cross-reactivity between antibodies to the four HCoV and SARS-CoV-2 Spike. In contrast to other antibodies to SARS-CoV-2, specific antibodies to sub-unit 2 of Spike (S2) in seronegative samples were highest in children. Upon infection with SARS-CoV-2, antibody levels to Spike of betacoronavirus OC43 increased across the whole age spectrum. No SARS-CoV-2 seropositive individuals with low levels of antibodies to seasonal HCoV were observed. INTERPRETATION: Our findings underline significant cross-reactivity between antibodies to SARS-CoV-2 and seasonal HCoV, but provide no significant evidence for cross-protective immunity to SARS-CoV-2 infection due to a recent seasonal HCoV infection. In particular, across all age groups we did not observe SARS-CoV-2 infected individuals with low levels of antibodies to seasonal HCoV. FUNDING: This work was supported by the « URGENCE COVID-19 ¼ fundraising campaign of Institut Pasteur, by the French Government's Investissement d'Avenir program, Laboratoire d'Excellence Integrative Biology of Emerging Infectious Diseases (Grant No. ANR-10-LABX-62-IBEID), and by the REACTing (Research & Action Emerging Infectious Diseases), and by the RECOVER project funded by the European Union's Horizon 2020 research and innovation programme under grant agreement No. 101003589, and by a grant from LabEx IBEID (ANR-10-LABX-62-IBEID).


Assuntos
COVID-19/imunologia , Imunidade Humoral/imunologia , SARS-CoV-2/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Antivirais/imunologia , Criança , Pré-Escolar , Ensaios Clínicos como Assunto , Reações Cruzadas/imunologia , Estudos Transversais , Feminino , França , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Pandemias/prevenção & controle , Estações do Ano , Estudos Soroepidemiológicos , Glicoproteína da Espícula de Coronavírus/imunologia , Adulto Jovem
9.
Nat Commun ; 12(1): 3025, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-34021152

RESUMO

Assessment of the cumulative incidence of SARS-CoV-2 infections is critical for monitoring the course and extent of the COVID-19 epidemic. Here, we report estimated seroprevalence in the French population and the proportion of infected individuals who developed neutralising antibodies at three points throughout the first epidemic wave. Testing 11,000 residual specimens for anti-SARS-CoV-2 IgG and neutralising antibodies, we find nationwide seroprevalence of 0.41% (95% CI: 0.05-0.88) mid-March, 4.14% (95% CI: 3.31-4.99) mid-April and 4.93% (95% CI: 4.02-5.89) mid-May 2020. Approximately 70% of seropositive individuals have detectable neutralising antibodies. Infection fatality rate is 0.84% (95% CI: 0.70-1.03) and increases exponentially with age. These results confirm that the nationwide lockdown substantially curbed transmission and that the vast majority of the French population remained susceptible to SARS-CoV-2 in May 2020. Our study shows the progression of the first epidemic wave and provides a framework to inform the ongoing public health response as viral transmission continues globally.


Assuntos
Anticorpos Antivirais/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Antivirais/sangue , COVID-19/epidemiologia , COVID-19/virologia , Criança , Pré-Escolar , Epidemias , Feminino , França/epidemiologia , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Prevalência , SARS-CoV-2/fisiologia , Estudos Soroepidemiológicos , Adulto Jovem
10.
Euro Surveill ; 26(15)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33860747

RESUMO

BackgroundChildren's role in SARS-CoV-2 epidemiology remains unclear. We investigated an initially unnoticed SARS-CoV-2 outbreak linked to schools in northern France, beginning as early as mid-January 2020.AimsThis retrospective observational study documents the extent of SARS-CoV-2 transmission, linked to an affected high school (n = 664 participants) and primary schools (n = 1,340 study participants), in the context of unsuspected SARS-CoV-2 circulation and limited control measures.MethodsBetween 30 March and 30 April 2020, all school staff, as well as pupils and their parents and relatives were invited for SARS-CoV-2 antibody testing and to complete a questionnaire covering symptom history since 13 January 2020.ResultsIn the high school, infection attack rates were 38.1% (91/239), 43.4% (23/53), and 59.3% (16/27), in pupils, teachers, and non-teaching staff respectively vs 10.1% (23/228) and 12.0% (14/117) in the pupils' parents and relatives (p < 0.001). Among the six primary schools, three children attending separate schools at the outbreak start, while symptomatic, might have introduced SARS-CoV-2 there, but symptomatic secondary cases related to them could not be definitely identified. In the primary schools overall, antibody prevalence in pupils sharing classes with symptomatic cases was higher than in pupils from other classes: 15/65 (23.1%) vs 30/445 (6.7%) (p < 0.001). Among 46 SARS-CoV-2 seropositive pupils < 12 years old, 20 were asymptomatic. Whether past HKU1 and OC43 seasonal coronavirus infection protected against SARS-CoV-2 infection in 6-11 year olds could not be inferred.ConclusionsViral circulation can occur in high and primary schools so keeping them open requires consideration of appropriate control measures and enhanced surveillance.


Assuntos
COVID-19 , Criança , Estudos de Coortes , França/epidemiologia , Humanos , Estudos Retrospectivos , SARS-CoV-2 , Instituições Acadêmicas
11.
Lancet Microbe ; 2(2): e60-e69, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33521709

RESUMO

BACKGROUND: Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces an antibody response targeting multiple antigens that changes over time. This study aims to take advantage of this complexity to develop more accurate serological diagnostics. METHODS: A multiplex serological assay was developed to measure IgG and IgM antibody responses to seven SARS-CoV-2 spike or nucleoprotein antigens, two antigens for the nucleoproteins of the 229E and NL63 seasonal coronaviruses, and three non-coronavirus antigens. Antibodies were measured in serum samples collected up to 39 days after symptom onset from 215 adults in four French hospitals (53 patients and 162 health-care workers) with quantitative RT-PCR-confirmed SARS-CoV-2 infection, and negative control serum samples collected from healthy adult blood donors before the start of the SARS-CoV-2 epidemic (335 samples from France, Thailand, and Peru). Machine learning classifiers were trained with the multiplex data to classify individuals with previous SARS-CoV-2 infection, with the best classification performance displayed by a random forests algorithm. A Bayesian mathematical model of antibody kinetics informed by prior information from other coronaviruses was used to estimate time-varying antibody responses and assess the sensitivity and classification performance of serological diagnostics during the first year following symptom onset. A statistical estimator is presented that can provide estimates of seroprevalence in very low-transmission settings. FINDINGS: IgG antibody responses to trimeric spike protein (Stri) identified individuals with previous SARS-CoV-2 infection with 91·6% (95% CI 87·5-94·5) sensitivity and 99·1% (97·4-99·7) specificity. Using a serological signature of IgG and IgM to multiple antigens, it was possible to identify infected individuals with 98·8% (96·5-99·6) sensitivity and 99·3% (97·6-99·8) specificity. Informed by existing data from other coronaviruses, we estimate that 1 year after infection, a monoplex assay with optimal anti-Stri IgG cutoff has 88·7% (95% credible interval 63·4-97·4) sensitivity and that a four-antigen multiplex assay can increase sensitivity to 96·4% (80·9-100·0). When applied to population-level serological surveys, statistical analysis of multiplex data allows estimation of seroprevalence levels less than 2%, below the false-positivity rate of many other assays. INTERPRETATION: Serological signatures based on antibody responses to multiple antigens can provide accurate and robust serological classification of individuals with previous SARS-CoV-2 infection. This provides potential solutions to two pressing challenges for SARS-CoV-2 serological surveillance: classifying individuals who were infected more than 6 months ago and measuring seroprevalence in serological surveys in very low-transmission settings. FUNDING: European Research Council. Fondation pour la Recherche Médicale. Institut Pasteur Task Force COVID-19.


Assuntos
COVID-19 , Adulto , Anticorpos Antivirais , Teorema de Bayes , COVID-19/diagnóstico , Humanos , Imunoglobulina G , Imunoglobulina M , Aprendizado de Máquina , SARS-CoV-2 , Sensibilidade e Especificidade , Estudos Soroepidemiológicos
13.
J Clin Virol Plus ; 1(4): 100041, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35262023

RESUMO

Background: The systemic antibody responses to SARS-CoV-2 in COVID-19 patients has been extensively studied. However, less is known about the mucosal responses in the upper airways, the site of initial SARS-CoV-2 replication. Methods: The IgG and IgA antibody responses were analysed in plasma and nasopharyngeal swabs from the first four confirmed COVID-19 patients in France. Two were pauci-symptomatic while two developed severe disease. We characterized their antibody profiles by using an in-house ELISA to detect antibodies directed against SARS-CoV-2 Nucleoprotein and Spike. Results: Anti-N IgG and IgA antibodies were detected in the NPS of severe patients only. The levels of antibodies in the plasma markedly differed amongst the patients. The most distinctive features are a strong anti-N IgG response in the severe patient who recovered, and a high anti-N IgA response specifically detected in the fatal case of COVID-19. Conclusions: Anti-N IgG and IgA antibodies are detected in NPS only for severe patients, with levels related to serological antibodies. The severe patients showed different antibody profiles in the plasma, notably regarding the IgA and IgG response to the N antigen, that may reflect different disease outcome. By contrast, pauci-symptomatic patients did not exhibit any mucosal antibodies in NSP, which is associated with a low or absent serological response against both N and S.

14.
Nucleic Acids Res ; 48(18): 10428-10440, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-32960265

RESUMO

Cellular exonucleases involved in the processes that regulate RNA stability and quality control have been shown to restrict or to promote the multiplication cycle of numerous RNA viruses. Influenza A viruses are major human pathogens that are responsible for seasonal epidemics, but the interplay between viral proteins and cellular exonucleases has never been specifically studied. Here, using a stringent interactomics screening strategy and an siRNA-silencing approach, we identified eight cellular factors among a set of 75 cellular proteins carrying exo(ribo)nuclease activities or involved in RNA decay processes that support influenza A virus multiplication. We show that the exoribonuclease ERI1 interacts with the PB2, PB1 and NP components of the viral ribonucleoproteins and is required for viral mRNA transcription. More specifically, we demonstrate that the protein-protein interaction is RNA dependent and that both the RNA binding and exonuclease activities of ERI1 are required to promote influenza A virus transcription. Finally, we provide evidence that during infection, the SLBP protein and histone mRNAs co-purify with vRNPs alongside ERI1, indicating that ERI1 is most probably recruited when it is present in the histone pre-mRNA processing complex in the nucleus.


Assuntos
Exorribonucleases/genética , Vírus da Influenza A/genética , Influenza Humana/genética , Proteínas Nucleares/genética , Fatores de Poliadenilação e Clivagem de mRNA/genética , Linhagem Celular , Histonas/genética , Interações Hospedeiro-Patógeno , Humanos , Vírus da Influenza A/patogenicidade , Influenza Humana/virologia , Estabilidade de RNA/genética , RNA Mensageiro/genética , RNA Interferente Pequeno , RNA Viral/genética , Ribonucleoproteínas/genética , Transcrição Gênica/genética , Proteínas Virais/genética , Replicação Viral/genética
15.
Sci Transl Med ; 12(559)2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32817357

RESUMO

It is of paramount importance to evaluate the prevalence of both asymptomatic and symptomatic cases of SARS-CoV-2 infection and their differing antibody response profiles. Here, we performed a pilot study of four serological assays to assess the amounts of anti-SARS-CoV-2 antibodies in serum samples obtained from 491 healthy individuals before the SARS-CoV-2 pandemic, 51 individuals hospitalized with COVID-19, 209 suspected cases of COVID-19 with mild symptoms, and 200 healthy blood donors. We used two ELISA assays that recognized the full-length nucleoprotein (N) or trimeric spike (S) protein ectodomain of SARS-CoV-2. In addition, we developed the S-Flow assay that recognized the S protein expressed at the cell surface using flow cytometry, and the luciferase immunoprecipitation system (LIPS) assay that recognized diverse SARS-CoV-2 antigens including the S1 domain and the carboxyl-terminal domain of N by immunoprecipitation. We obtained similar results with the four serological assays. Differences in sensitivity were attributed to the technique and the antigen used. High anti-SARS-CoV-2 antibody titers were associated with neutralization activity, which was assessed using infectious SARS-CoV-2 or lentiviral-S pseudotype virus. In hospitalized patients with COVID-19, seroconversion and virus neutralization occurred between 5 and 14 days after symptom onset, confirming previous studies. Seropositivity was detected in 32% of mildly symptomatic individuals within 15 days of symptom onset and in 3% of healthy blood donors. The four antibody assays that we used enabled a broad evaluation of SARS-CoV-2 seroprevalence and antibody profiling in different subpopulations within one region.


Assuntos
Anticorpos Antivirais/sangue , Betacoronavirus/imunologia , Técnicas de Laboratório Clínico/métodos , Infecções por Coronavirus/diagnóstico , Pneumonia Viral/diagnóstico , Testes Sorológicos/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19 , Teste para COVID-19 , Estudos de Coortes , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/imunologia , Ensaio de Imunoadsorção Enzimática/métodos , Feminino , Citometria de Fluxo/métodos , França/epidemiologia , Voluntários Saudáveis , Humanos , Imunoprecipitação/métodos , Luciferases , Masculino , Pessoa de Meia-Idade , Testes de Neutralização , Pandemias , Pneumonia Viral/epidemiologia , Pneumonia Viral/imunologia , SARS-CoV-2 , Estudos Soroepidemiológicos , Glicoproteína da Espícula de Coronavírus/imunologia , Pesquisa Translacional Biomédica , Adulto Jovem
16.
G3 (Bethesda) ; 10(9): 3399-3402, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32763951

RESUMO

The world is facing a global pandemic of COVID-19 caused by the SARS-CoV-2 coronavirus. Here we describe a collection of codon-optimized coding sequences for SARS-CoV-2 cloned into Gateway-compatible entry vectors, which enable rapid transfer into a variety of expression and tagging vectors. The collection is freely available. We hope that widespread availability of this SARS-CoV-2 resource will enable many subsequent molecular studies to better understand the viral life cycle and how to block it.


Assuntos
Betacoronavirus/genética , Fases de Leitura Aberta/genética , Betacoronavirus/isolamento & purificação , COVID-19 , Clonagem Molecular , Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Escherichia coli/metabolismo , Humanos , Pandemias , Plasmídeos/genética , Plasmídeos/metabolismo , Pneumonia Viral/patologia , Pneumonia Viral/virologia , Potyvirus/genética , SARS-CoV-2
17.
mBio ; 11(2)2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32265326

RESUMO

The multifunctional nature of viral proteins is essentially driven by posttranslational modifications (PTMs) and is key for the successful outcome of infection. For influenza A viruses (IAVs), a composite pattern of PTMs regulates the activity of viral proteins. However, almost none are known that target the PB2 replication protein, except for inducing its degradation. We show here that PB2 undergoes a nonproteolytic ubiquitination during infection. We identified E3 ubiquitin ligases catalyzing this ubiquitination as two multicomponent RING-E3 ligases based on cullin 4 (CRL4s), which are both contributing to the levels of ubiquitinated forms of PB2 in infected cells. The CRL4 E3 ligase activity is required for the normal progression of the viral cycle and for maximal virion production, indicating that the CRL4s mediate a ubiquitin signaling that promotes infection. The CRL4s are recruiting PB2 through an unconventional bimodal interaction with both the DDB1 adaptor and DCAF substrate receptors. While able to bind to PB2 when engaged in the viral polymerase complex, the CRL4 factors do not alter transcription and replication of the viral segments during infection. CRL4 ligases catalyze different patterns of lysine ubiquitination on PB2. Recombinant viruses mutated in the targeted lysines showed attenuated viral production, suggesting that CRL4-mediated ubiquitination of PB2 contributes to IAV infection. We identified K29-linked ubiquitin chains as main components of the nonproteolytic PB2 ubiquitination mediated by the CRL4s, providing the first example of the role of this atypical ubiquitin linkage in the regulation of a viral infection.IMPORTANCE Successful infection by influenza A virus, a pathogen of major public health importance, involves fine regulation of the multiple functions of the viral proteins, which often relies on post-translational modifications (PTMs). The PB2 protein of influenza A viruses is essential for viral replication and a key determinant of host range. While PTMs of PB2 inducing its degradation have been identified, here we show that PB2 undergoes a regulating PTM signaling detected during infection, based on an atypical K29-linked ubiquitination and mediated by two multicomponent E3 ubiquitin ligases. Recombinant viruses impaired for CRL4-mediated ubiquitination are attenuated, indicating that ubiquitination of PB2 is necessary for an optimal influenza A virus infection. The CRL4 E3 ligases are required for normal viral cycle progression and for maximal virion production. Consequently, they represent potential candidate host factors for antiviral targets.


Assuntos
Proteínas Culina/metabolismo , Vírus da Influenza A/química , Provírus/enzimologia , RNA Polimerase Dependente de RNA/química , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Proteínas Virais/química , Replicação Viral , Células A549 , Proteínas Culina/genética , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Vírus da Influenza A/fisiologia , Processamento de Proteína Pós-Traducional
18.
Cell Rep ; 30(5): 1570-1584.e6, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-32023470

RESUMO

Deubiquitylases (DUBs) regulate critical signaling pathways at the intersection of host immunity and viral pathogenesis. Although RIG-I activation is heavily dependent on ubiquitylation, systematic analyses of DUBs that regulate this pathway have not been performed. Using a ubiquitin C-terminal electrophile, we profile DUBs that function during influenza A virus (IAV) infection and isolate OTUB1 as a key regulator of RIG-I-dependent antiviral responses. Upon infection, OTUB1 relocalizes from the nucleus to mitochondrial membranes together with RIG-I, viral PB2, and NS1. Its expression depends on competing effects of interferon stimulation and IAV-triggered degradation. OTUB1 activates RIG-I via a dual mechanism of K48 polyubiquitin hydrolysis and formation of an E2-repressive complex with UBCH5c. We reconstitute this mechanism in a cell-free system comprising [35S]IRF3, purified RIG-I, mitochondrial membranes, and cytosol expressing OTUB1 variants. A range of IAV NS1 proteins trigger proteasomal degradation of OTUB1, antagonizing the RIG-I signaling cascade and antiviral responses.


Assuntos
Cisteína Endopeptidases/metabolismo , Proteína DEAD-box 58/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Receptores Imunológicos/metabolismo , Transdução de Sinais/imunologia , Proteínas não Estruturais Virais/metabolismo , Células A549 , Animais , Citosol/metabolismo , Enzimas Desubiquitinantes/metabolismo , Cães , Deleção de Genes , Células HEK293 , Humanos , Influenza Humana , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/metabolismo , Células Madin Darby de Rim Canino , Masculino , Membranas Mitocondriais/metabolismo , NF-kappa B/metabolismo , Multimerização Proteica
19.
Nat Commun ; 10(1): 3907, 2019 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-31467278

RESUMO

Complementary assays are required to comprehensively map complex biological entities such as genomes, proteomes and interactome networks. However, how various assays can be optimally combined to approach completeness while maintaining high precision often remains unclear. Here, we propose a framework for binary protein-protein interaction (PPI) mapping based on optimally combining assays and/or assay versions to maximize detection of true positive interactions, while avoiding detection of random protein pairs. We have engineered a novel NanoLuc two-hybrid (N2H) system that integrates 12 different versions, differing by protein expression systems and tagging configurations. The resulting union of N2H versions recovers as many PPIs as 10 distinct assays combined. Thus, to further improve PPI mapping, developing alternative versions of existing assays might be as productive as designing completely new assays. Our findings should be applicable to systematic mapping of other biological landscapes.


Assuntos
Bioensaio/métodos , Mapeamento de Interação de Proteínas/métodos , Proteoma/análise , Bases de Dados de Proteínas , Células HEK293 , Células HeLa , Ensaios de Triagem em Larga Escala/métodos , Humanos , Mapas de Interação de Proteínas , Proteínas/metabolismo , Proteômica/métodos , Técnicas do Sistema de Duplo-Híbrido
20.
Cell Rep ; 26(7): 1800-1814.e5, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30759391

RESUMO

The mechanisms that regulate envelopment of HCV and other viruses that bud intracellularly and/or lack late-domain motifs are largely unknown. We reported that K63 polyubiquitination of the HCV nonstructural (NS) 2 protein mediates HRS (ESCRT-0 component) binding and envelopment. Nevertheless, the ubiquitin signaling that governs NS2 ubiquitination remained unknown. Here, we map the NS2 interactome with the ubiquitin proteasome system (UPS) via mammalian cell-based screens. NS2 interacts with E3 ligases, deubiquitinases, and ligase regulators, some of which are candidate proviral or antiviral factors. MARCH8, a RING-finger E3 ligase, catalyzes K63-linked NS2 polyubiquitination in vitro and in HCV-infected cells. MARCH8 is required for infection with HCV, dengue, and Zika viruses and specifically mediates HCV envelopment. Our data reveal regulation of HCV envelopment via ubiquitin signaling and both a viral protein substrate and a ubiquitin K63-linkage of the understudied MARCH8, with potential implications for cell biology, virology, and host-targeted antiviral design.


Assuntos
Hepacivirus/metabolismo , Hepatite C/virologia , Ubiquitina-Proteína Ligases/metabolismo , Proteínas não Estruturais Virais/metabolismo , Linhagem Celular Tumoral , Retículo Endoplasmático/metabolismo , Células HEK293 , Hepacivirus/patogenicidade , Hepatite C/genética , Hepatite C/metabolismo , Humanos , Transdução de Sinais , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...